Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors

نویسندگان

  • Frédéric Jacob
  • Franc̨ois Petitcolin
  • Thomas Schmugge
  • Éric Vermote
  • Andrew French
  • Kenta Ogawa
چکیده

This study compared surface emissivity and radiometric temperature retrievals derived from data collected with the MODerate resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) sensors, onboard the NASA’s Earth Observation System (EOS)-TERRA satellite. Two study sites were selected: a semi-arid area located in northern Chihuahuan desert, USA, and a Savannah landscape located in central Africa. Atmospheric corrections were performed using the MODTRAN 4 atmospheric radiative transfer code along with atmospheric profiles generated by the National Center for Environmental Predictions (NCEP). Atmospheric radiative properties were derived from MODTRAN 4 calculations according to the sensor swaths, which yielded different strategies from one sensor to the other. The MODIS estimates were then computed using a designed Temperature-Independent Spectral Indices of Emissivity (TISIE) method. The ASTER estimates were derived using the Temperature Emissivity Separation (TES) algorithm. The MODIS and ASTER radiometric temperature retrievals were in good agreement when the atmospheric corrections were similar, with differences lower than 0.9 K. The emissivity estimates were compared for MODIS/ASTER matching bands at 8.5 and 11 Am. It was shown that the retrievals agreed well, with RMSD ranging from 0.005 to 0.015, and biases ranging from 0.01 to 0.005. At 8.5 Am, the ranges of emissivities from both sensors were very similar. At 11 Am, however, the ranges of MODIS values were broader than those of the ASTER estimates. The larger MODIS values were ascribed to the gray body problem of the TES algorithm, whereas the lower MODIS values were not consistent with field references. Finally, we assessed the combined effects of spatial variability and sensor resolution. It was shown that for the study areas we considered, these effects were not critical. D 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement on Land Surface Temperature Determination by Producing Surface Emissivity Maps

Emissivity mapping of the Earth’s surface is the prerequisite to thermal remote sensing. A precise determinationof a surface's temperature is dependent upon the availability of precise emissivity data for that surface. The presentstudy area is a part of sugarcane plantation fields in the west part of Khuzestan province. In this work, TemperatureEmissivity Separation algorithm (TES) was applied ...

متن کامل

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

Reducing the Discrepancy Between ASTER and MODIS Land Surface Temperature Products

Human-induced global warming has significantly increased the importance ofsatellite monitoring of land surface temperature (LST) on a global scale. The MODerate-resolution Imaging Spectroradiometer (MODIS) provides a 1-km resolution LST productwith almost daily coverage of the Earth, invaluable to both local and global change studies.The Advanced Spaceborne Thermal Emission Reflection Radiomete...

متن کامل

Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects

The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists o...

متن کامل

Inversion of Surface Temperature Based on MODIS and ASTER Imagery

In this paper, on the basis of summarizing the main algorithms of retrieval of land surface temperature, the principle of temperature retrieval algorithm based on multi-channel data is described and factors affecting the accuracy of retrieval are analyzed. In addition, mixed pixel emissivity is discussed and the relevant estimation method using the results of classification of visible-band imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004